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Abstract

Persistent homology is a branch of topological data analysis that aims to

identify geometric patterns in metric spaces. This information is encoded

in some topological summaries and recent research has provided tools for

a statistical approach to some of these summaries. We try to understand

how the order flows on limit order books of ”similar” stocks trigger each

other using this theory.
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Chapter 1

Introduction

More than half of global markets currently operate using a limit order book (LOB)

to store the information of the orders on an electronic market [25]. Understanding

the dynamics of the book, and notably the order flows is important for a market

participant trying to liquidate an important position for instance. Empirical studies

have lead to the identification of stylized facts of the LOB: heavy-tailed return dis-

tributions, volatility clustering, long memory in order flow and autocorrelation and

long memory of returns [25].

1.1 Financial Context

Order-driven markets are trading platforms where all the information about the or-

ders is available to all participants, as opposed to quote-driven markets where the

only information comes from the quotes set and made public by market makers. In

the latter, traders can only post orders at the prices proposed by the market mak-

ers, whereas they have more freedom in order-driven markets [10]. In Chapter 4 of

the present work, we use data from the National Association of Securities Dealers

Automated Quotations (NASDAQ) which is an American stock exchange located in

New-York City.

There exists several asset classes including Equity, Bonds, Foreign exchange or

Commodities for example. Market participants such as corporate managers, propri-

etary traders or regular investors post buy or sell orders at a given size (quantity

of shares) and price. These orders are received by the market and then matched

by an algorithm according to priority rules. In the case of the NASDAQ, there is a

time-priority queue which will be explained in the next section. A limit order book

is the structure where the information about the orders received is stored [10]. The

smallest number of shares of the asset that can be traded is called the lot size, the
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smallest price different authorized between two trades is called the tick size. A market

participant can only post orders with sizes that are multiples of the lot size and with

prices that are multiples of the tick size. An order indicates the willingness of the

poster to buy (or sell) shares of the stock for a given price and quantity [25].

In our work, we are interested in the two following types of orders:

• Market Orders: Orders in a given direction (buy or sell) with a size specification

only,

• Limit Orders: Orders in a given direction with both a size and price specifica-

tion.

Market orders seek for an immediate execution for the best available price. As there

are not necessarily other market participants selling or buying the asset for any specific

price at the time a limit order is posted, a limit order will most likely not be executed

immediately. It will be stored in the limit order book until it gets filled totally or

partially by a market order or until it gets canceled totally or partially by the market

participant who posted the order.

1.2 Mathematical Approach

There exists several modeling approaches to the LOB: economic models, jump diffu-

sion models, agent-based models, etc. In fact, one of the modeling difficulties inherent

to the LOB is its complex state space structure. During the last decade, topologi-

cal data analysis has emerged as an interesting method to study point cloud data.

The objective of persistent homology is to identify persistent geometric structures

in a metric space. Biology is one of the notable fields of application of this theory,

for instance to study the maltose-binding protein in [27] and to extract Molecular

Topological Fingerprints in [45] that characterize proteins. In oncology, persistent

homology theory has been used to identify a subgroup of breast cancer in [34] and

to forecast disease-free survival of patients with Glioblastoma tumors in [18]. It has

also been successfully applied in Computer vision for the study of natural images in

[8] and in Telecommunications to study the efficiency of sensors network coverage

in [20]. In Finance, persistent homology has been applied to correlation networks

derived from the time series of closing prices of equities listed in the NASDAQ and

New York Stock Exchange in [30] and the Dow Jones Industrial Average in [24].
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Current areas of research include stability [17, 12, 14] and convergence results [15,

7], the study of new summary statistics [6, 16], kernel based learning [38], and the

use of persistent homology within machine learning models [35,31].

1.3 Work Outline

Our main objectives are to investigate the statical approach to persistent topology

and see how it helps us understand the dynamics of the order flows. We present

the construction of persistent homology in Chapter 2 as well as the stability results

for robustness to model error. We define a statistical framework for topological de-

scriptors in Chapter 3. We survey the recent statistical methods in this area for the

construction of Fréchet means, hypothesis tests and confidence sets on persistence

diagrams. We also approach the learning problem using Reproducing Kernels, vec-

torization methods and finally propose an original Perceptron model. In Chapter 4,

we study the order flows of the limit order books of 7 stocks listed on NASDAQ. We

conclude with a discussion on our results and further work in Chapter 5.

3



Chapter 2

Persistent Homology

The interpretation and the definition of the topological descriptors that we use in

the next chapters is not straightforward. Therefore, this chapter aims to show the

formal construction of these objects, while the next one discusses statistical inference

in these settings with no specific reference to finance.

In Section 3.1 we construct the key element of this theory, the pth persistent ho-

mology. In Section 3.2 we focus on a specific step of this construction, the definition

of a filtered simplicial complex because it is crucial from a computational standpoint.

In Section 3.3 we define the topological descriptors we will be using, and in Section

3.4 we discuss the stability of these descriptors which is important for practical ap-

plications with noisy data. We provide proofs of the propositions when they are not

provided in the references we cite.

2.1 Preliminary Definitions

In this section we follow the definitions in [22].

Definition 2.1.1 (k-simplex). Let k ∈ N. Let (xi)i∈J0,kK be affinely independent points

of Rd . We say that σ = conv(x0, . . . , xk) is a k-simplex where conv() denotes the

convex hull of a set of points.

For all integers j ≤ k, and indexes (i0, . . . , ij) ∈ J0, kK, we say that the j-simplex

τ = conv(xi0 , . . . , xij) is a face of σ and we write τ ≤ σ. If j < k, we say that τ is a

proper face of σ.

A 0-simplex is called a vertex, a 1-simplex is called an edge, a 2-simplex is called

a triangle and a 3-simplex is called a tetrahedron.1

1Since the field of reference in the present work will be F2 = Z/2Z, we do not define oriented
simplices.
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Definition 2.1.2 (Simplicial complex). We say that a finite collection2 of simplices

K is a simplicial complex if:

• ∀σ ∈ K, ∀τ ≤ σ we have τ ∈ K.

• ∀σ, σ0 ∈ K we have σ ∩ σ0 is either empty or a face of both.

We say that |K| = ∪σ∈Kσ is the underlying space of K. We denote by Vert(K) the

set of vertices of K. For all integers p ∈ J0, nK, we denote by Kp the set of p-simplices

of K.

To consider finite subsets of other metric spaces (Appendix B) which are not

necessarily Euclidian, it is convenient to define abstract simplicial complexes.

Definition 2.1.3 (Abstract simplicial complex). We say that a finite collection of

sets E is an abstract simplicial complex if ∀x ∈ E, ∀y ⊂ x we have y ∈ E.

Given a simplicial complex K with vertices V ert(K) = (xi)i∈J0,nK, we build the

abstract simplicial complex E given by:

E = {(xi0 , . . . , xik) : k ≤ n, (i0, . . . , ik) ∈ J0, nK, conv(xi0 , . . . , xik) ∈ K}.

We say that E is a vertex scheme of K, and that K is a geometric realization of E.

To develop the rest of the theory, it would be useful to define a vector space

structure on the underlying space of any simplicial complex and then consider linear

maps between these spaces. An approach to construct these maps is to start by

defining barycentric coordinates and maps between vertices, then extend them using

convex combinations.

Proposition 1 (Barycentric coordinates). Let K be a simplicial complex with vertices

(xi)i∈J0,nK. There exists a unique collection of n maps (bi)i∈J0,nK such that for all

x ∈ |K| we have x =
∑n

i=0 bi(x)xi. We call the maps (bi)i∈J0,nK the barycentric

coordinates of x.

Proof. Let K be a simplicial complex with vertices (xi)i∈J0,nK. Let x ∈ |K|. By

definition, x ∈ conv(xi0, . . . , xn). Thus, ∃(λj)j∈J0,nK such that x =
∑n

j=0 λjxj and∑n
j=0 λj = 1. This proves the existence of the maps, as (λj)j∈J0,nK will depend on x.

2This definition can be extended to infinite sets of simplices but we will not use such complexes
in the present work.
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Let (µj)j∈J0,nK such that x =
∑n

j=0 µjxj and
∑n

j=0 µj = 1. Therefore,
∑n

j=0(λj −
µj)xj = 0 and

∑n
j=0(λj − µj). Since the vectors (xi)i∈J0,nK are affinely independent,

λj − µj = 0 for all integers j ∈ J0, nK. Hence the uniqueness of the maps.

Hence, for all x ∈ |K| there exists a unique (λ
(x)
j )j∈J0,nK such that x =

∑n
j=0 λ

(x)
j xj.

We then define the barycentric coordinates as the maps bi : x 7→ λ
(x)
i for all integers

i ∈ J0, nK.

Definition 2.1.4 (Vertex map). Let K,L be two simplicial complexes. A vertex map

is a function φ : V ert(K) 7→ V ert(L).

Definition 2.1.5 (Simplicial map). Let K,L be two simplicial complexes and φ a

vertex map. Let n be the dimension of K and V ert(K) = (xi)i∈J0,nK. Let (bi)i∈J0,nK be

the barycentric coordinates of |K|. The simplicial map f : |K| 7→ |L| induced by φ is

f(x) =
∑n

i=0 bi(x)φ(xi). By abuse of notation, we write f : K 7→ L.

We now define a vector space structure on every set of k-simplices. For the rest

of this section, let K be a simplicial complex of dimension n such that V ert(K) =

(xi)i∈J0,nK.
3

Definition 2.1.6 (p-chain). Let p ∈ J0, nK. A p-chain is a formal sum of p-simplices

weighted by elements of F2. We denote the set of p-chains by Cp = {c =
∑card(Kp)

i=1 αiσi :

∀i σi ∈ Kp, αi ∈ F2}.
Since (Cp,+) is an abelian group, we can define a F2-vector space structure on Cp

with the external law . : F2 × Cp → Cp such that for all c, c′ ∈ Cp , for all λ, λ′ ∈ F2:

λ.c+ λ′.c′ =
∑card(Kp)

i=1 (λ.αi + λ′.α′i)σi.

For convenience, we denote by conv(x0, . . . , x̂j, . . . , xp) the convex envelope of

{xi : i ∈ J0, pK, i 6= p}. We now focus on specific vector subspaces of Cp.

Definition 2.1.7 (Boundary operator). Let p ∈ J1, nK. We define the boundary

operator ∂p : Cp → Cp−1 by specifying first its values on Kp : ∂p(conv(xi0 , . . . , xip)) =∑p
j=0 conv(xi0 , . . . , x̂ij , . . . , xip). We define ∂p on Cp by linear extension.

We define ∂0 : C0 → {0} .

Proposition 2 (Nilpotence of the boundary operator). ∀p > 0, ∂p ◦ ∂p+1 = 0.

3We only focus on the field F2 in the present work but the following definitions can be adapted
to any field.
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Proof. Let p ∈ J1, nK as this result is trivial for p = 0. Let σ = conv(xi0 , . . . , xip+1).

We have :

∂p ◦ ∂p+1(σ) = ∂p(

p+1∑
j=0

conv(xi0 , . . . , x̂ij , . . . , xip+1))

∂p ◦ ∂p+1(σ) =

p+1∑
j=0

∂p(conv(xi0 , . . . , x̂ij , . . . , xip+1))

∂p ◦ ∂p+1(σ) =
∑

j,k∈J0,p+1K
j 6=k

conv(xi0 , . . . , x̂ik , . . . , x̂ij , . . . , xip)

∂p ◦ ∂p+1(σ) =
∑

j,k∈J0,p+1K
j<k

conv(xi0 , . . . , x̂ik , . . . , x̂ij , . . . , xip) +
∑

j,k∈J0,p+1K
k<j

conv(xi0 , . . . , x̂ik , . . . , x̂ij , . . . , xip)

Since the two terms on the right hand side are obviously equal, then their sum is zero

in Cp−1 because the field of reference is F2 (Appendix B).

This property implies that for all p ∈ J0, n− 1K, im(∂p+1) ⊂ ker(∂p), which allows

us to define the homology group. We then define homology maps by extension of the

notion of simplicial maps.

Definition 2.1.8 (Homology group). For all integers p ∈ J0, nK, we define the group

of p-cycles by Zp = ker(∂p).

For all integers p ∈ J0, n− 1K, we define the group of p-boundaries by Bp = im(∂p+1)

and the pth homology group as the quotient space Hp = Zp/Bp. The pth Betti number

is βp := rank(Hp) = dim(Zp)− dim(Bp).

Definition 2.1.9 (Induced map on homology). Let p ∈ J0, nK. Let L be another

simplicial complex and let f : K 7→ L be a simplicial map. We define the map

f# : Kp 7→ Lp such that :

f#(conv(xi0 , . . . , xip)) =

{
f(conv(xi0 , . . . , xip)) if f(conv(xi0 , . . . , xip)) ∈ Lp

0 if f(conv(xi0 , . . . , xip)) /∈ Lp
By linear extension, we define f# : Cp(K) 7→ Cp(L) the induced map on homology.

Proposition 3 (Functoriality). Let p ∈ J0, nK. Let L be another simplicial complex

and let f# : Kp 7→ Lp be a homology map. Let ∂p,K and ∂p,L be the p boundary

operators on K and L.

f# ◦ ∂p,K = ∂p,L ◦ f# (2.1)
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Proposition 4. Let p ∈ J0, nK. Let L be another simplicial complex and let f# :

Kp 7→ Lp be a homology map.

1. f#(Zp(K)) ⊆ Zp(L),

2. f#(Bp(K)) ⊆ Bp(L),

3. rank(f#(Hp(K))) ≤ min(βp(K), βp(L)).

Proof. Let c ∈ Zp(K). By Proposition 3 we have ∂p,L(f#(c)) = f#(∂p,K(c)). Since

∂p,K(c) = 0 and f is linear, therefore ∂p,L(f#(c)) = 0 i.e. f#(c) ∈ Zp(L). This proves

(1).

Let c ∈ Bp(K). By definition, there exists c′ ∈ Cp+1(K) such that c = ∂p+1,K(c′).

Then f#(c) = f#(∂p+1,K(c′)). By Proposition 3, f#(∂p+1,K(c′)) = ∂p+1,L(f#(c′)) there-

fore c = ∂p+1,L(f#(c′)) i.e. f#(c) ∈ Bp(L). This proves (2).

From (1) and (2), we have f#(Hp(K)) ⊂ Hp(L). Hence f#(Hp(K)) is a subgroup

of Hp(L), thus rank(f#(Hp(K))) ≤ rank(Hp(L)) = βp(L). Since f# is a group

morphism, rank(f#(Hp(K))) ≤ rank(Hp(K)) = βp(K). This proves (3).

Definition 2.1.10 (Filtered simplicial complex). We say that K is a filtered simpli-

cial complex if there exists an integer m > 0 and a family of simplicial complexes

(Ki)i∈J1,mK such that for all i ∈ J1,m− 1K Ki ⊂ Ki+1 and Km = K.

The next section will emphasize some classic ways to construct filtrations.

Definition 2.1.11 (pth persistent homology). We consider an integer p ∈ J0, nK. Let

K be a filtered simplicial complex with subcomplexes (Ki)i∈J1,mK. For all i, j ∈ J1,mK
such that i ≤ j, let fi,j : Ki 7→ Kj be the inclusion map between Ki and Kj. We let

f# : Hp(Ki) 7→ Hp(Kj) be the induced homology map. The pth persistent homology is

the set {(Hp(Ki))i∈J1,mK, (fi,j)1≤i≤j≤m}.

2.2 The Vietoris–Rips Complex

Let (X, dX) be a metric space. To obtain the persistent homology sets of X, we have

to define a filtered simplicial complex with vertices the elements of X. In practice, we

aim to minimize the computational cost of generating this complex.

In [21], the authors propose the following general approach to build filtered simplicial

complexes in Rn. We consider the set F(Rn) = {E ⊂ Rn|E finite} and a Borel

measurable function f : F(Rn) 7→ R+ such that:
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1. f(τ) ≤ f(σ) if τ ⊂ σ,

2. f(σ + x) = f(σ) ∀σ ∈ F(Rn), x ∈ Rn,

3. ∃ρ : R+ 7→ R+ increasing and such that ‖x− y‖2 ≤ ρ(f({x, y})) ∀x, y ∈ Rn.

Proposition 5. Let σ ∈ F(Rn). ∀r > 0, F (σ, r) = {τ ⊂ σ|f(τ) ≤ r} is a simplicial

complex.

We focus on the two following cases and their generalization in any metric space:

• f({x1 . . . xp}) = inf
y∈Rn

max
i∈J1,pK

‖xi − y‖2. F (σ, r) is called the C̆ech complex.

• f({x1 . . . xp}) = max
i,j∈J1,pK

‖xi − xj‖2. F (σ, r) is called the V̆ietoris-Rips complex.

We follow the definitions of the two following complexes in [22].

Definition 2.2.1 (C̆ech complex). For all values of the filtration parameter r > 0, we

define the intrinsic C̆ech complex on the vertex set X as Čech(X, r) = { [x0, . . . , xk] :

∩ki=0B(xi, r) 6= ∅}.

Example 2.2.1. Consider the metric space (R2, d2) where d2 is the distance induced

by the L2 norm. We consider a set of points:

X = {(0.45, 0.45), (0.4, 0.6), (0.6, 0.7), (0.9, 0.45), (0.75, 0.7), (0.8, 0.9)}.

Let r = 0.18. Geometrically, the C̆ech complex of vertex set X with filtration parameter

r is the simplicial complex which k-simplices are the convex hulls of k points which

minimum enclosing ball is of radius r at most. We plot this complex in Figure 2.1.

The transparent gray circles are the circles centered in the points of X of radius

r. They are the vertices (0-simplices) of Čech(X, r). Each blue line is an edge (1-

simplex) of Čech(X, r) (the convex hull of two distinct points is a line). Each yellow

triangle is a triangle (2-simplex) of Čech(X, r) (the convex hull of three points in

general position in the plane is the inside surface of a triangle). We note that there

is no combination of 4 or more circles with a common intersection. Therefore there

is no simplex of dimension 3 or more in Čech(X, r) and its dimension is exactly 2.

Definition 2.2.2 (Vietoris–Rips complex). For all values of the filtration parameter

r > 0, we define the Vietoris-Rips complex on the vertex set X as Rips(X, r) =

{ [x0, . . . , xk] : ∀i, j dX(xi, xj) ≤ r}.

9



Figure 2.1: C̆ech complex of X with filtration parameter r.

Example 2.2.2. Consider again the metric space (R2, d2). We consider another set

of points:

X = {(0.45, 0.45), (0.5, 0.6), (0.6, 0.6), (0.6, 0.7]), (0.8, 0.45), (0.75, 0.7), (0.6, 0.8), (0.7, 0.8), (0.8, 0.9)}.

Let r = 0.18. Geometrically, the Vietoris–Rips of vertex set X with filtration parame-

ter r is the simplicial complex which k-simplices are the convex hulls of k points with

pairwise distances r at most. We plot this complex in Figure 2.2.

The transparent gray circles are the circles centered in the points of X of radius r.

Again, the points are the vertices of Rips(X, r), the blue lines are 1-simplices and the

yellow triangles are the 2-simplices. We note that the points 4,6,7 and 8 have pairwise

distances inferior to r. Therefore their convex envelope is a tetrahedron (3-simplex)

of Rips(X, r). There are no 4-simplices in Rips(X, r), its dimension is exactly 3.

In the present work, we use the software Ripser [4] to compute the Vietoris–Rips

complex of our point clouds. Ripser is a C++ code that computes the Vietoris-Rips

complex of a given point cloud inputted as a distance matrix, and uses it to output the

corresponding barcode, one of the the topological descriptors that we present in the

next section. There is no peer-reviewed software paper for Ripser to our knowledge,

but we use it because it is presently the fastest code for the computation of the

homology induced by the Vietoris–Rips complex [36].
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Figure 2.2: Vietoris-Rips complex of X with filtration parameter r.

2.3 Functional Summaries

Let K be a filtered simplicial complex with subcomplexes (Ki)i∈J1,mK. In this section,

we focus on descriptors of the pth persistent homology ofK, {(Hp(Ki))i∈J1,lK, (fi,j)1≤i≤j≤l}
given an integer p ∈ J0, nK. The following definitions are taken from [36].

Definition 2.3.1 (Barcode). A barcode Bp is a finite multiset of intervals representing

the birth and death of a p-homology class.

Formally, for each filtration step i ∈ J1,mK, let U (i) = (u
(i)
b )b∈J1,βp(Ki)K be a basis of

Hp(Ki) chosen accordingly to [46 Corollary 4.1] . Let U =
⋃m
i=1 U

(i) be the set of all

these basis vectors and ∀u ∈ U, I(u) = {i : i ∈ J1,mK, u ∈ U (i)}. Then :

Bp := {[min(I(u)),max(I(u))) : u ∈ U},

where max(I(u)) = max(I(u)) if max(I(u)) < m, and max(I(u)) = +∞ otherwise.

In practice, the usual graphical representation for barcodes is the following dia-

gram : for all [ ai, bi) ∈ Bp, we draw a horizontal line from ai to bi if bi < +∞. If bi

is not finite, we usually stop the line at an arbitary threshold. The y-coordinates of

these horizontal lines are arbitrary.
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Figure 2.3: Barcode example

Example 2.3.1.

Definition 2.3.2 (Persistence diagram). Let R = {R∪{±∞}}. Let B be the barcode

of K. The pth persistence diagram dgmp(K) induced by K is the finite multiset of

points in R such that dgmp(K) := {(ai, bi) : [ ai, bi) ∈ Bp}.

We denote by D the set of persistence diagrams.

Example 2.3.2. We plot the corresponding persistence diagram for the previous ex-

ample.

2.4 Stability

In this section we define various metrics on D which will be useful for the statistical

methods of the following chapter. In applications of persistent homology with em-

pirical data, it is important to quantify the noise in persistence diagrams induced by

the noise of the observations. This is made possible by stability theorems.

Let d be a metric on R2. For any line L ⊂ R2, we denote by πL(d) : R2 7→ R2 the

projection on the line L with respect to the distance d. If the projection is not unique

(it could be the case if d is note induced by a norm), we chose arbitrarily one of the

12



Figure 2.4: Persistence diagram example

vectors realizing the minimum.We denote by ∆ the diagonal line of R2, i.e. the set

∆ = {(x, x) : x ∈ R2}.
For two finite subsets X, Y ⊂ R2 such that card(X) ≤ card(y) for instance, we

say that γ(d)(X, Y ) is a matching between X, Y if there exists φ : X 7→ Y injective

such that γ(d)(X, Y ) = {(x, φ(x)) | x ∈ X} ∪ {(y, π∆(d)(y)) | y ∈ Y }. We denote by

Γ(d)(X, Y ) the set of matchings γ(d)(X, Y ).

2.4.1 A first metric on D

In the literature, the strongest stability results are the ones for the Bottleneck distance

shown in [14].

Definition 2.4.1 (Bottleneck distance). Let D1, D2 ∈ D. The Bottleneck distance

between D1 and D2 is defined as :

W∞[d](D1, D2) = inf
γ∈Γ(d)(D1,D2)

{ sup
(x,y)∈γ

{d(x, y)}}

Proposition 2.4.1. The Bottleneck distance is a metric on D.

Proof. Let D1, D2, D3 ∈ D. W∞[d](D1, D2) ≥ 0 because d verifies the separation

axiom. W∞(D1, D2) = 0 if and only if there exists γ ∈ Γ(d)(D1, D2) such that

13



d(x1, x2) = 0 for all x1, x2 ∈ γ. Therefore for all x1, x2 ∈ γ we have x1 = x2, hence

D1 = D2. W∞[d] is clearly symmetric and subadditive because d is, therefore it is

indeed a metric on D.

We use the notation W∞ = W∞[d∞] where d∞ is the distance induced by the L∞

norm, because it is the most used metric for the Bottleneck distance in the literature.

Before presenting the stability theorem for the Bottleneck distance, we define a specific

class of functions to which it applies to following [22].

Definition 2.4.2 (Triangulable space). Let X be a topological space. We say that X
is triangulable if there exists a simplicial complex K such that X is homeomorphic to

|K|. We say that T = (K, |K|) is a triangulation of X.

Definition 2.4.3 (Tame function). Let X be a triangulable topological space. Let

f : X→ R continuous. We define the sublevel sets of f as Xa = f−1(−∞, a] and the

homology maps fa,bp : Hp(Xa) → Hp(Xb). We say that im(fa,bp ) is the pth persistent

homology group and define its Betti number βa,bp = rank(im(fa,bp )). We say that

α ∈ R is a homological critical value if ∀ε > 0, ∃p ∈ N such that fa−ε,a+ε
p is not an

isomorphism.

We say that f is a tame function if:

1. It has finitely many homological critical values,

2. ∀a, b ∈ R, a < b, ∀p ∈ N βa,bp < +∞.

Theorem 1 (Stability theorem for the Bottleneck distance). Let X be a triangulable

topological space. For any tame functions f1, f2 : X→ R with pth persistence diagrams

D1 = dgm(f1) and D2 = dgm(f2), we have:

W∞(D1, D2) ≤ ‖f1 − f2‖∞.

There exists a stability inequality for the bottleneck distance using the Gromov-

Hausdorff distance which will be useful for statistical inference [13].

Definition 2.4.4 (Hausdorff distance). Let A,B be two closed subsets of a metric

space. The Hausdorff distance between A and B is defined as :

WH [d](A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}.

Definition 2.4.5 (Gromov–Hausdorff distance). Let A,B be two closed metric spaces.

The Gromov-Hausdorff distance between A and B is defined as :

WGH [d](A,B) = inf{WH [d](f(A), g(B)) : Xmetric space, f : A→ X, g : B → X isometries}.

14



2.4.2 Resolution-stability tradeoff

A third metric on D, the Wasserstein distance defined below, captures the difference

between point clouds in diagrams in more detail. Nonetheless, the associated stability

theorem is applicable to a smaller functional space [22].

Definition 2.4.6 (Wasserstein distance). Let D1, D2 ∈ D. The degree-q Wasserstein

distance between D1 and D2 is defined as :

Wq[d](D1, D2) = inf
γ∈Γ(d)(D1,D2)

{( ∑
(x,y)∈γ

d(x, y)q
) 1
q

}
.

We use the notation Wq(D1, D2) := Wq[d∞](D1, D2). The degree q Wasserstein

distance converges to the Bottleneck distance:

Proposition 6. Let D1, D2 ∈ D.

lim
q→∞

Wq[d](D1, D2) = W∞[d](D1, D2).

Proof. By definition, Wq[d](D1, D2) = inf
γ∈Γ(d)(D1,D2)

{(
∑

(x,y)∈γ d(x, y)q)
1
q }. For all γ ∈

Γ(d)(D1, D2), we have:

lim
q→∞

( ∑
(x,y)∈γ

d(x, y)q
) 1
q = sup

(x,y)∈γ
{d(x, y)}.

Since:

lim
q→∞

inf
γ∈Γ(d)(D1,D2)

{( ∑
(x,y)∈γ

d(x, y)q
) 1
q

}
= inf

γ∈Γ(d)(D1,D2)

{
lim
q→∞

( ∑
(x,y)∈γ

d(x, y)q
) 1
q

}
,

therefore:

lim
q→∞

inf
γ∈Γ(d)(D1,D2)

{( ∑
(x,y)∈γ

d(x, y)q
) 1
q

}
= inf

γ∈Γ(d)(D1,D2)

{
sup

(x,y)∈γ
{d(x, y)}

}
.

Theorem 2 (Stability theorem for the Wasserstein distance). Let X be a triangulable

metric space whose triangulations grow polynomially with constant exponent j. For

any Lipschitz tame functions f1, f2 : X → R with pth persistence diagrams D1 =

dgm(f1) and D2 = dgm(f2), ∃C ∈ R, k > j such that ∀k ≤ q:

Wq(D1, D2) ≤ C.‖f1 − f2‖
1− k

q
∞ .
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Chapter 3

Statistical Inference on Persistence
Diagrams

The goal of this chapter is to introduce a statistical framework on the set of persistence

diagrams D. We define probability measures and a notion of mean on this set in

Section 4.1. In Section 4.2, we introduce a notion of Reproducing Kernels on D
which will be useful for hypothesis testing in Section 4.3. In Section 4.4, we present

confidence sets on D. In Section 4.5, we present some statistical learning methods on

D and introduce our own perceptron model for persistence diagrams.

3.1 Fréchet Mean

The structure of D raises important issues to build or estimate fundamental stochas-

tic objects, which is highlighted in this section by the Fréchet mean of persistence

diagrams. A statistical approach first requires us to define probability measures on

the set of persistence diagrams. We note that D is not complete for any of the metrics

we defined so far. Therefore a classical approach in the literature is to restrict the

study to a certain subset of persistence diagrams.

For any metric M on D, we define DM = {D ∈ D : M(D,∆) < +∞} where ∆ is the

diagonal line in R2.

3.1.1 Existence of Fréchet Means

The results in [32] show that (DWq ,Wq) is a complete separable metric space, hence

it admits probability measures. Let B(DWq) be the Borel σ−algebra on DWq and let

µ be a probability measure on (DWq , B(DWq)).
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Definition 3.1.1 (Fréchet variance and mean). We define the Fréchet function Fµ(D) :

DWq → R as Fµ(D) =
∫
DWq

Wq(D, δ)dµ(δ) for all D ∈ DWq .

We define the Fréchet variance as V arµ = inf
D∈DWq

{Fµ(D)}.

We define the Fréchet mean as Eµ = {D ∈ DWq |Fµ(D) = V arµ}.

The following result from [32] shows the existence of a Fréchet mean.

Theorem 3.1.1 (Existence of Fréchet mean). If the probability measure µ has a finite

second moment and a compact support, then Eµ 6= ∅.

3.1.2 Computation: A greedy approach

The approach in [43] focuses on the metric space (DW ,W ). By equivalence of norms

in finite dimensional spaces (applied to the L∞ and L2 induced metrics on R2), it is

straight forward that (DW ,W ) is also a complete separable metric space. We define

the metric W := W2[d2] where d2 is the distance induced by the L2 norm on R2. Let µ

be a probability measure on (DW , B(DW )). An interesting case of Fréchet mean is the

case of a discrete measure µ = 1
n

∑n
i=1 δXi , Xi ∈ DW as it allows us to define a notion

of the barycenter of a finite collection of persistence diagrams (Xi)i. The authors

in [43] propose the algorithm below to find local minima of the Fréchet function on

(DW , B(DW ), µ) based on the Kuhn–Munkres algorithm [33].

It is shown in [43 Section 3.1] that Algorithm 1 converges to a local minimum of

the Fréchet function. A limit of this algorithm emphasized in [29] is its computational

cost due to the combinatorials of the pairings considered.

3.1.3 Computation: Entropic smoothed formulation

An alternative approach to the greedy Algorithm 1 is to formulate the Fréchet Mean

problem in (DW , B(DW ), µ) where µ = 1
n

∑n
i=1 δXi , Xi ∈ DW as an entropic smoothed

optimal transport problem as developed in [29].

We start by defining some notation.

Definition 3.1.2 (Optimal transport problem). Let X be a set with a cost function

c : X ×X → R+. Let U1 = (ai)i∈J1,n1K and U2 = (bi)i∈J1,n2K be finite subsets of X . Let

µ1 =
∑n1

i=1 αiδai and µ2 =
∑n2

i=1 βiδbi where (αi)i∈J1,n1K and (βi)i∈J1,n2K are real valued

positive weights such that
∑n1

i=1 αi =
∑n2

i=1 βi.

We define the cost matrix C = (c(ai, bj))i,j and the transportation polytope Π(µ1, µ2) =

{P ∈ Mn1,n2(R+) : ∀i
∑n2

j=1 Pi,j = αi, ∀j
∑n1

i=1 Pi,j = βj}. The associated optimal
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Algorithm 1: Greedy algorithm for the Fréchet mean.

Data: Persistence diagrams (X1, . . . , Xn)
Result: Fréchet mean Y

Draw k uniformly in J1, nK;
initialization Y ← Xk;
stop ← False;
/* this is a comment to tell you that we will now really start

code */

while not stop do
K = card(Y );
for i = 1 to n do

(yj, xij)← Kuhn–Munkres(Y,Xi) /* compute the optimal pairings

between Y and Xi with the Kuhn-Munkres algorithm. */

;

end
for j = 1 to K do

yj ← (
i∈J1,nK

xij) /* Assign to each off-diagonal point of Y the

arithmetic mean of its pairings. */

;

end
if Hungarian(Y,Xi) = (yj, xij) then

stop ← True;
end

end
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transport problem is :

dC(µ1, µ2) = inf
P∈Π(µ1,µ2)

〈P,C〉, (3.1)

where 〈P,C〉 denotes the standard inner product on Mn1,n2.

In the case n1 = n2 =: n and ∀i αi = βi, a result by Choquet (1956) shows

Π(µ1, µ2) = {P (σ) ∈ Mn1,n2(R+) : σ ∈ Sn, ∀i, jPi,j = δj,σ(i)} where Sn is the set

of permutations of J1, nK. The idea developed in [29] is to introduce an entropic

regularization in equation 3.1.

Definition 3.1.3 (Regularized optimal transport problem). We consider an optimal

transport problem as defined in equation 3.1. Let γ > 0 be the regularization weight,

and we define the entropy h(P ) = −
∑

i,j Pi,jlog(Pi,j) for P ∈ Π(µ1, µ2). We define

the regularized problem as the minimization program :

d̂γC(µ1, µ2) = inf
P∈Π(µ1,µ2)

〈P,C〉 − γh(P ). (3.2)

We call d̂γC the Sinkhorn distance. Let K = exp(− 1
γ
C) (with term-wise exponenti-

ation). We define the Sinkhorn map S : Mn1,1 ×Mn2,1 → Mn1,1 ×Mn2,1 such that

S(u, v) = ( U1

Kv
, U2

KTu
) (term-wise division).

We can now get back to our initial problem, formulating the Wasserstein distance

in terms of optimal transport.

Proposition 7 (Solution of the regularized problem). The equation 3.2 has a unique

solution P ∗ = diag(u∗)Kdiag(v∗) where (u∗, v∗) is a fixed point of the Sinkhorn map.

Proposition 8 (Optimal transport formulation for the Wasserstein distance). Let

D1, D2 ∈ D such that D1 = (ai)i∈J1,n1K and D2 = (bi)i∈J1,n2K. We consider the two

following measures on R2 : µ1 =
∑n1

i=1 δai and µ2 =
∑n2

i=1 δbi.

We define a cost matrix C ∈Mn1+1,n2+1 between µ1 and µ2 by:

C =


d2(b1, π∆(b1)))2

((d2(ai, bj))
2)i,j

...

d2(bn2 , π∆(bn2)))2

(d2(a1, π∆(a1)))2 . . . d2(an1 , π∆(an1)))2 0


Then using (insertref) we have:

W (D1, D2) = dC(µ1 + n2δ∆, µ2 + n1δ∆). (3.3)
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We approximate the solution to the optimal transport problem in (3.3) with the

regularized form in (3.2) which leads to the following dual formulation [19]:

Theorem 3 (Dual formulation). The regularized formulation in 3.2 can be expressed

as follows for the Wasserstein distance problem:

d̂γC(µ1, µ2) = max
(v(1),v(2))∈Mn1,1×Mn2,1

〈v(1), U1〉+ 〈v(2), U2〉 − γ
∑
i,j

exp
(v(1)

i + v
(2)
j − Ci,j
γ

)
.

(3.4)

Proposition 9 (Differentiability of the Sinkhorn distance). For any measure µ2, the

map µ1 7→ d̂γC(µ1, µ2) is differentiable and its differential is ∇µ1 d̂
γ
C(µ1, µ2) = A∗ where

(A∗, B∗) is a solution to 3.4.

Finally, we define the barycenter of persistence diagrams and a method to compute

it as in [29].

Definition 3.1.4 (Histogram). Let (Di)i∈J1,nK be persistence diagrams. We discretize

R2
+ with a grid, and we associate to each persistence diagram Di a probability measure

µi which is proportional to the counting measure on each rectangle of the grid. We

say that the (µi)i∈J1,nK are histograms.

Definition 3.1.5 (Barycenter of a family of persistence diagrams). Let (Di)i∈J1,nK be

persistence diagrams with histograms (µi)i∈J1,nK. We note that for all histograms µ, for

all i ∈ J1, nK, the regularized optimal transport problems for the Wasserstein distance

between µ and µi have the same cost matrix C. By differentiability of the Sinkhorn

distance, The map E(µ) = 1
n

∑n
i=1 d̂

γ
C(µ, µi) is differentiable and ∇E(µ) = 1

n

∑n
i=1A

∗
i .

We define the barycenter of (Di)i∈J1,nK as the minimum of E.

3.2 Distance-induced Reproducing Kernels

Reproducing kernels are a useful tool for inference and learning. In this section, we

define reproducing kernels and some of the issues that appear to use them on the

space of persistence diagrams D, as well as the sliced Wasserstein kernel introduced

in [9]. The algebraic structures needed on the spaces we will consider are defined in

Appendix B. For the following definitions in this section, let X be a topological space.

Definition 3.2.1 (Kernel). We say that a map k : X × X 7→ R is a kernel if it

is symmetric. We say that k is positive semi-definite if ∀n ∈ N∗, ∀(ui)i∈J1,nK ∈
Xn, ∀(αi)i∈J1,nK ∈ Rn

∑n
i=1 αiαjk(ui, uj) ≥ 0. We say that k is positive definite if

the inequality is strict.
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Definition 3.2.2 (Gram matrix). Let (H, 〈., .〉H) be a Hilbert space. Let n ∈ N∗

and U = (ui)i∈J1,nK ∈ Hn. The Gram matrix G(U) is the matrix with elements

G(U)i,j = 〈ui, uj〉H, i, j ∈ J1, nK.

For the rest of this section, let (H, 〈., .〉H) be a Hilbert space such that H ⊆ RX.

For any kernel k on X and and U = (ui)i∈J1,nK ∈ Hn, we define the Gram matrix of k

as Gk(U) = (k(ui, uj))i,j∈J1,nK.

Definition 3.2.3 (Reproducing Kernel Hilbert Space). We say that H is a reproduc-

ing kernel Hilbert space if ∃Φ : X 7→ H verifying the reproducing property :

∀f ∈ H, ∀x ∈ X, f(x) = 〈f,Φ(x)〉H.

H is called a feature space, Φ a feature map and Φ(x) a feature vector.

We define a reproducing kernel as the kernel

k : X× X→ R

(x, y) 7→ 〈Φ(x),Φ(y)〉H.

We note that for all U = (ui)i∈J1,nK ∈ Xn, the matrix (k(ui, uj))i,j∈J1,nK is the gram

matrix of V = (Φ(ui))i∈J1,nK ∈ Hn. The Moore–Aronszajn Theorem [2] gives a first

characterization of kernels.

Theorem 4 (Kernel characterization). A symmetric map k : X×X 7→ R is a repro-

ducing kernel ⇐⇒ k is positive semi-definite.

The interest of reproducing kernels for the present work is that they will be useful

to build test statistics and to solve a loss minimization program for learning models

on D. Therefore, an important question is how to build a reproducing kernel k given

(X,H).

Definition 3.2.4 (Conditionally negative semidefinite map). We say that a sym-

metric map d : X × X 7→ R+ is conditionally negative semidefinite (c.n.s.d.) if

∀n ∈ N∗, ∀(ui)i∈J1,nK ∈ Xn, ∀(αi)i∈J1,nK ∈ Rn such that
∑n

i=1 αi = 0 we have∑n
i=1

∑n
j=1 αiαjd(ui, uj) ≤ 0.

The Kimeldorf–Wahba Theorem [26] shows how to build reproducing kernels from

c.n.s.d distances.
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Theorem 5 (Kernels from conditionally negative semidefinite maps). Let d : X×X 7→
R+ be conditionally negative semidefinite. Then ∀σ > 0, the map

k : X× X→ R

(u, v) 7→ exp
(
− d(u, v)

2σ2

)
is positive definite.

We now specify X = D. We note that the Wasserstein distance is not a condition-

ally negative semidefinite map, as shown numerically in [38 Appendix A]. However,

[9] proposes a map on D, the sliced Wasserstein distance that is c.n.s.d .

Definition 3.2.5 (Sliced Wasserstein metric). For all measure µ, ν on R such that

µ(R) = ν(R) < +∞ , let W(µ, ν) = inf
P∈Π(µ,ν)

∫∫
R×R |x− y|P (dx, dy)) where Π(µ, ν) is

the set of probability measures on R with marginals µ and ν.

For all θ ∈ S1 the radius 1 sphere in (R2, ‖ . ‖2), we define L(θ) = {λθ : λ ∈ R} and

πθ : R2 → L(θ) the orthogonal projection on L(θ). Let D1, D2 ∈ D, we consider the

measures µθ1 =
∑

x∈D1
δπθ(x) and µθ1∆ =

∑
x∈D1

δπθ◦π∆(x) and similarly for µθ2 and µθ2∆.

We define the Sliced Wasserstein metric as :

SW(D1, D2) =
1

2π

∫
S1

W(µθ1 + µθ2∆, µ
θ
2 + µθ1∆)dθ

The sliced Wasserstein kernel kSW is defined as the Gaussian Kernel induced by SW.

Proposition 3.2.1. The sliced Wasserstein metric is c.n.s.d .

Definition 3.2.6 (Sliced Wasserstein kernel). The sliced Wasserstein kernel kSW is

defined as the Gaussian Kernel induced by SW from Theorem 5:

kSW : D ×D → R

(u, v) 7→ exp
(
− d(u, v)

2σ2

)
Other notable Kernels used in the literature are:

• The persistence weighted gaussian kernel kPWGK [28].

• The Persistence Scale Space kernel kPSS [38].

3.3 Hypothesis Testing

The objective of this section is to introduce some methods to build statistics for null

hypothesis significance testing on D.
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3.3.1 Two-sample test

Let µ(1), µ(2) be two probability measures on D. We consider two families of per-

sistence diagrams D(1) = (D
(1)
i )i∈J1,n1K and D(2) = (D

(2)
i )i∈J1,n2K such that ∀m ∈

{1, 2}, (D(m)
1 , . . . , D

(m)
nm ) ∼

i.i.d.
µ(m). We consider the test with null hypothesis:

H0 : µ(1) = µ(2)

A first approach for two-sample tests on persistence diagrams was proposed in

[39] using a permutation test. Let T be a test statistic. We define the set of re-

labellings of the observations P(D(1), D(2)) = {(E(1), E(2)) : E(1) ∩ E(2) = ∅,∀m ∈
{1, 2} E(m) ⊂ D(1) ∪ D(2), card(E(m)) = nm}. Under H0, all those labellings have

the same probability. The permutation p-value of the test is defined as

p =
card({(E(1), E(2)) ∈ P(D(1), D(2)) : T ((D(1), D(2))) ≥ T ((E(1), E(2)))})

card(P(D(1), D(2)))
(3.5)

From a computational standpoint, we can estimate p by Monte-Carlo simulation in

case card(P(D(1), D(2)) =
(
n1+n2

n1

)
is too large. Let p̂N be this estimate for N Monte-

Carlo iterations.

Theorem 3.3.1 (Permutation p-value). p̂N is a p-value.

An extension of this permutation test to m families of persistence diagrams (where

m ≥ 3) is proposed in [11]: the authors use the same statistic and reshuffle the la-

bellings of the m families for a Monte-Carlo estimate of the p-value.

Another approach developed in [42] relies on the RKHS theory. The test statistic

here is an empirical estimate of the Maximum Mean Discrepancy (MMD).

Definition 3.3.1 (Maximum Mean Discrepancy). Let (X, dX) be a metric space and

let H = RX. For all Borel probability measures P,Q on X, let X, Y be random vari-

ables on X such that X ∼ P and Y ∼ Q. we define the Maximum Mean Discrepancy

(MMD) by:

γ(D(1), D(2)) = sup
f∈H

(
EX∼P [ f(X)] − EY∼Q[ f(Y )]

)
(3.6)

Proposition 3.3.1 (Biased Estimator of the MMD). Let k be a reproducing kernel

on D. A biased estimator of the MMD between the measures induced by D(1) and D(2)
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is given by:

γ̂(D(1), D(2)) =
1

n2
1

n1∑
i=1

n1∑
j=1

k(D
(1)
i , D

(1)
j ) +

1

n2
2

n2∑
i=1

n2∑
i=1

k(D
(2)
i , D

(2)
j )

− 2

n1n2

n1∑
i=1

n2∑
j=1

k(D
(1)
i , D

(2)
j )

(3.7)

Proposition 3.3.2 (Asymptotic distribution of empirical MMD). Under H0, the

statistic in 3.7 converges to a weighted sum of chi-squares.

3.3.2 Independence test.

Let µ be a probability measure on D × D with marginals µ(1), µ(2). We consider a

family of pairs of persistence diagrams Z = (Zi)i∈J1,nK where Zi = (D
(1)
i , D

(2)
i ), i ∈

J1, nK such that (Z1, . . . , Zn) ∼
i.i.d.

µ. The following results are based on [42].

Definition 3.3.2 ( Hilbert-Schmidt Independence Criterion). Let (X, dX) and (Y, dY)

be metric spaces. For all Borel probability measures P,Q on X and Y, let X, Y be

random variables on X such that X ∼ P and Y ∼ Q. we define the Hilbert-Schmidt

Independence Criterion as:

γ(D(1), D(2)) = sup
f∈H

(
EX∼P [ f(X)] − EY∼Q[ f(Y )]

)
(3.8)

Definition 3.3.3 (Biased Estimator of the HSIC). Let k1, k2 be reproducing kernels

on D. We define the matrices K1 = (k1(D
(1)
i , D

(1)
j ))i,j, K1 = (k1(D

(2)
i , D

(2)
j ))i,j and

H = (δi, j − 1
n
)i,j. A biased estimator of the HSIC between the measures induced by

D(1) and D(2) is given by:

Tk1,k2(Z) =
1

n
Tr(K1HK2H) (3.9)

Proposition 3.3.3 (Assymptotic distribution of empirical HSIC). Under H0, the

statistic in 3.9 converges to a weighted sum of chi-squares.

3.4 Confidence Sets

We consider a d-dimensional manifold M with a metric d. Let µ be a probability

measure with compact support Xµ ∈M. We observe a point cloud XN = (x
(N)
i )i∈J1,NK

consisting of N points of Xµ sampled from µ. We consider DN = dgm(XN) and

D = dgm(Xµ). In applications of persistent homology, it is important to answer the

following questions:
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1. How to quantify the accuracy of DN as an estimator of D ?

2. How to distinguish noise from signal in our observations ?

Definition 3.4.1 (Confidence set). For a given confidence level α ∈ [ 0, 1] , we define

a 1−α confidence set for Xµ as an interval [0, cN ] such that limN→∞ P(W∞[d](DN , D) >

cN) < α.

Finding a confidence set for Xµ provides answers to both questions 1 and 2,

as we then consider the points in the set {(a, b) ∈ R2
+ : d((a, b),∆) = cN} where

∆ = {(a, a) ∈ R2
+} as noise. In this section, we follow [23] to find these confidence

sets.

The starting point proposed in [23] is to note that W∞(DN , D) ≤ WH(XN , Xµ) by

Theorem 1. Therefore, if cN is such that limN→∞ P((WH [d](XN , Xµ) > cN) < α then:

lim
N→∞

P(W∞(DN , D) > cN) < lim
N→∞

P(WH(XN , Xµ) > cN) < α

All the methods in [23] find an upper bound for WH(XN , Xµ) which is used to bound

P(W∞(DN , D) > cN).

3.4.1 Subsampling

Assume we observe XN . We choose an integer bN ≤ N and consider the pN =
(
N
bN

)
subsets of XN of cardinality bN , denoted (Y N

i )i∈J1,pN K. Let Ti = WH(XN , Y
N
i ), i ∈

J1, pNK and the empirical complementary cumulative distribution function Lb(r) =
1
N

∑N
i=1 1(Tj > r).

Theorem 6 (Subsampling confidence intervals). Let cbN = 2L−1
bN

(α).

P(W∞(DN , D) > cbN ) ≤ α +O(
bN
N

) (3.10)

3.4.2 Concentration of measure

An alternative approach is based on the study of the function:

ρ : Xµ × R+ → R+

(x, r) 7→
µ(B(x, r

2
))

rd

We assume that ∀x ∈ Xµ, r 7→ ρ(x, r) is continuous and bounded. We define the

following functions:
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• ρR : R+ → R+ such that ρR(r) = inf
x∈Xµ

ρ(x, r)

• ρX : Xµ → R+ such that ρX(x) = limr→0+ ρ(x, r)

• ρ = limr→0+ ρR(r)

We assume that ∃r0 > 0, γ1 ∈ R, γ2 ∈ R such that :

sup
x∈Xµ

sup
r∈[ 0,r0]

|∂ρ(x, r)

∂r
| ≤ γ1, (3.11)

sup
r∈[ 0,r0]

|ρ′R(r)| ≤ γ2. (3.12)

Let µN(A) = 1
N

∑N
i=1 1A(x

(N)
i ) be the empirical measure. For rN = Ω(( log(N)

N
)

1
d+2 )

we define:

ρN = min
i∈J1,NK

µN(B(x
(N)
i , rN

2
))

rdN
.

We define cN(α) as the solution of:

2d+1

cdN(α)ρN
exp

(
−N cdN(α)ρN

2

)
= α. (3.13)

The second method proposed in [23] to derive a confidence set is to randomly split

the observations in two families of the same cardinality (assuming N is even) denoted

by XN = X
(1)
N ∪X

(2)
N . From the subset (1), we derive c

(1)
N (α) as in Equation 3.13. We

then use c
(1)
N (α) to construct a confidence set for X

(2)
N .

Theorem 7 (Concentration of measure confidence intervals).

P
(
W∞(D

(2)
N , D) > c

(1)
N (α)

)
≤ α +O

( log(N)

N

) 1
2+d
. (3.14)

A variant of this method is to introduce a kernel estimator. Let G : R+ → R+

such that G(x) = P(ρX(X) ≤ x) and g := G
′
. We define ρ̂(x, rN) =

µN (B(x,
rN
2

))

rdN
and

Vi = ρ̂(Xi, rn), ∀i ∈ J1, NK. Let rN = ( log(N)
N

)
1

2+d and bN = Ω(r
1
4
N). We estimate g

using a kernel k:

ĝN(x) =
1

N

N∑
i=1

1

bN
K
(v − Vi

b

)
.

We define cN(α) as the solution of:

2d+1

cN(α)d

∫ ∞
ρN

ĝN(x)

x
exp

(
− NxcN(α)d

2

)
dx = α. (3.15)
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As before we randomly split the observations in two families. From the subset (1),

we derive c
(1)
N (α) as in equation 3.15. We then use c

(1)
N (α) to construct a confidence

set for X
(2)
N .

Theorem 8 (Kernel estimation confidence intervals).

P
(
W∞(D

(2)
N , D) > c

(1)
N (α)

)
≤ α +O

( log(N)

N

) 1
2+d
. (3.16)

3.5 Statistical Learning

3.5.1 Kernel based learning

We observe a finite collection of persistence diagrams (Di)i∈J1,nK associated to real

valued outputs (yi)i∈J1,nK. We want to find a function f ∗ : D 7→ R that approximates

the observed map with respect to some loss metric. This problem is formalized as

follow:

f ∗ = argmin
f∈F

{ n∑
i=1

l(f(xi), yi) + φ(‖f‖)
}
, (3.17)

where F ⊂ RD is called the class of predictors, φ : R 7→ R is the regularization

function, and l : R × R 7→ R is the loss function. The choice of a loss function

depends on the learning technique, classic ones include:

• Least squares : l(f(x), y) = (y − f(x))2,

• Logistic regression : l(f(x), y) = log(1 + exp(−yf(x))),

• Support Vector Machines : l(f(x), y) = (1− yf(x))+.

The result by Schôlkopf et al. in [41] allows us to solve Equation 3.17 in a much easier

way.

Theorem 9 (Representer Theorem). Let H be a Reproducing Kernel Hilbert Space

and k the associated reproducing kernel. Then:

f ∗is a solution to Equation 3.17 ⇐⇒ ∃(αi)i∈J1,nK ∈ Rn such that f ∗ =
n∑
i=1

αik(Di, .).
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3.5.2 Vectorization method

Another approach in the literature is to embed persistence diagrams into vectors of

fixed length and use these as inputs for standard learning models [38,1]. Assume

∃(Bmin, Bmax) ∈ R2
+ such that (Di)i∈J1,nK ⊂ ([Bmin, Bmax] × [Bmin, Bmax] )n. We

consider a discretization of [Bmin, Bmax] × [Bmin, Bmax] . The objective is to encode

the information of a given persistence diagram in a histogram derived from the grid:

we build a vector by evaluating a given function on the discretization steps and then

sorting these values in a chosen order. We illustrate this with the approach in [1] that

is based on persistence images.

For a persistence diagram D = {(ai, bi) : i ∈ J1, nK}, we define the persistent image

ρ : R2 → R as:

ρ(x, y) =
n∑
i=1

w(ai, bi) exp(−(ai − x)2 + (bi − y)2

2σ2
),

where σ > 0 and w : R2 → R a weight function.

3.5.3 A perceptron on Dp

Suppose a finite collection of vectors of persistence diagrams (X(i))i∈J1,nK associated to

real valued outputs (yi)i∈J1,nK. For all i ∈ J1, nK, X(i) = (Di
j)j∈J1,pK. We want to find

a function f ∗ : Dn 7→ R that approximates the observed map with respect to some

loss metric. To do so, we develop a model by analogy with a perceptron [40]. The

weighted sum operation in a classical MLP is replaced in our model by the weighted

barycenter map developed to compute the Fréchet Mean in Section 3.1. The model is

trained by solving a minimization program similar to Equation 3.17, which is made

possible by the differentiability of the Sinkhorn distance from Proposition 9.

In particular, the two following questions look of interest:

1. How does this model compare to vectorizing the persistence diagrams and em-

bedding them into a classical Multi Layer Perceptron ?

2. Is the Fréchet mean a good proxy for the addition operator on D ?

Definition 3.5.1 (Persistence Diagram Perceptron). We define a persistence diagram

perceptron as a map:

f : Dp → R

(Dj)j∈J1,pK 7→ g
(
Bar
(
(ωj, Dj)j∈J1,pK

))
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Where (ωj)j∈J1,pK ⊂ Rp and g : D → R.

The function g is fixed a priori. The learning weights (ωj)j∈J1,pK will be updated

during training. To approximate the observed maps with respect to a loss metric l

and a regularization term φ, the learning weights should solve for:

(ωj)
∗
j∈J1,pK = argmin

(ωj)j∈J1,pK⊂Rp

{ n∑
i=1

l(g
(
Bar

(
(ωj, D

i
j)j∈J1,pK

))
, yi) + φ(‖f‖)

}
(3.18)

To train the perceptron, we first consider the general case where g is differentiable.

We solve the program 3.18 using the gradient descent method:

∆ωj = −η
∂g
(
Bar

(
(ωj, D

i
j)j∈J1,pK

))
∂ωj

ωj ← ωj + ∆ωj

But it is not straightforward to make a suitable choice of function g : D → R.
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Chapter 4

Persistent Homology of Order
Flows

4.1 Dataset

4.1.1 Stocks and period

We consider the limit order books between 3 July 2017 and 1 December 2017 of seven

stocks traded on NASDAQ : AAPL (Apple Inc.), CSCO (Cisco Systems, Inc.), FB

(Facebook, Inc.), GOOG (Alphabet Inc.), INTC (Intel Corporation), MSFT (Mi-

crosoft Corporation) and NVDA (NVIDIA). On the Nasdaq website, they are all

listed in the same industry sector (”Technology”) and in the same market capitaliza-

tion class (”mega caps”, except NVDA which is listed within ”large caps”).

For the choice of the period considered, we tried to avoid important economic

events that may influence financial markets too much. We note that among these

companies, there were two Mergers and Acquisitions deals over $ 1 billion in the

considered period: Alphabet bought HTC on 21 September 2017 (for $ 1.1 billion)

and Cisco bought BroadSoft on 25 October 2017 (for $ 1.9 billion). Most importantly,

NASDAQ was closed on 4 July 2017, 4 September 2017 and 23 November 2017. The

day before each of these days, there is an early market closure at 1:00 p.m EST. We

exclude the three market closure days from our study as well the three early market

closure days. Therefore, we consider 106 trading days overall.

4.1.2 Limit order book data

The limit order books were obtained via LOBSTER and consist of the message .csv

file for every day and every stock considered. This file records all the events that occur

on the LOB during the normal trading session of NASDAQ. This trading session lasts
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from 9:30 a.m EST to 4:00 p.m. EST. There exists 7 types of events on the order

book : the submission of a new limit order, the partial deletion of a limit order, the

total deletion of a limit order, the execution of a visible limit order, the execution of a

hidden limit order, cross trades and an additional event class which is a trading halt

indicator. In the present work, we focus solely on three events: the submission of a

new limit order, and the execution of a visible or a hidden limit order. We only select

the orders posted at the first 5 levels in the book. For all events, we get the following

information: at which time it has been received (in seconds, with nanosecond decimal

precision), the event’s unique order ID, its size, its price and its direction. Overall,

this represents 52.9 GB of data (177 378 008 admissible orders). Our main objective

is to understand whether certain types of orders trigger other types of orders.

4.2 Model

Let Ndays = 106 be the number of trading days considered. We consider 4 order types

: limit buy (lb), limit sell (ls), market buy (mb) and market sell (ms). We denote by

O = (Oi)i∈J1,4K = {lb, ls,mb,ms} the set of order types, and by S = (Si)i∈J1,7K the set

of stock names. Let X = (Si, Oj)i,j be the set of stock-order type combinations. Let

ε > 0 and f : R→ R a continuous map.

There is Tday = 23400s in every considered trading session. Let Ttotal = Tday ×
Ndays = 2480400s be the total number of seconds in the considered trading ses-

sions.We denote the set of finite unions of closed intervals in [ 0, Ttotal] by:

T = {∪ni=1[ ai, bi] : n ∈ N∗, [ ai, bi] ⊂ [ 0, Ttotal] ∀i ∈ J1, nK, [ ai, bi]∩[ aj, bj] = ∅ ∀i 6= j}.

For all T ∈ T where T = ∪ni=1[ ai, bi] , we define length(T ) =
∑n

i=1(bi−ai). Assume in

this section that we define the time at which a given order is received as the cumulative

active trading time in seconds since the opening of the first trading session considered

in this work. Hence, the times at which orders are received lie between 0 and Ttotal.

For each time period T ∈ T , we construct d[ ε, f, T ] a symmetric map on X ×X
as follows:

• We decompose T as the union of nε,T = length(T )
ε

disjoint time intervals of length

ε. This decomposition is of course unique and we write T = ∪nε,Th=1Th.

• For all integers h ∈ J1, nε,T K, let Y i,j
h (respectively Y k,l

h ) be the number of orders

of type Oj (respectively Ol) on stock Si (respectively Sj) received during Th.

• Let ρij,kl be the empirical correlation between (Y i,j
h )h∈J1,nε,T K and (Y k,l

h )h∈J1,nε,T K.
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• We define d[ ε, f, T ]((Si, Oj), (Sk, Ol)) := f(ρij,kl).

We now define the symmetric maps we will be using and the notations for the asso-

ciated spaces:

• dX[ ε, f ] := d
[
ε, f, [ 0, Ttotal]

]
and the associated space X :=

(
X, f

(
dX[ ε, f ]

))
.

This case corresponds to computing correlations over the whole period consid-

ered.

• For all integers i ∈ J1, NdaysK, define:

di[ ε, f ] := d
[
ε, f,

[
(i− 1)× Tday, (i)× Tday

] ]
,

and the associated space:

Xi :=
(
X, f

(
dXi [ ε, f ]

))
.

This case corresponds to Ndays spaces where we compute correlations over one

day for each one.

• For all integers i ∈ J1, NdaysK, define:

dHopeningi
[ ε, f ] := d

[
ε, f,

[
(i− 1)× Tday, (i− 1)× Tday + 3600

] ]
,

and the associated space:

Hopening
i =

(
X, f

(
dHopeningi

[ ε, f ]
))
.

This case corresponds to Ndays spaces where we compute correlations over the

first hour of the day for each one.

• For all integers i ∈ J1, NdaysK, define:

dHclosurei
[ ε, f ] := d

[
ε, f,

[
(i)× Tday − 3600, (i)× Tday

] ]
,

and the associated space:

Hclosure
i =

(
X, f

(
dHclosingi

[ ε, f ]
))
.

This case corresponds to Ndays spaces where we compute correlations over the

last hour of the day for each one.
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• For all integers i ∈ J1, NdaysK, define:

dHmiddlei
[ ε, f ] := d

[
ε, f,

[
(i− 1)× Tday + 3600, (i)× Tday − 3600

] ]
,

and the associated space:

Hmiddle
i =

(
X, f

(
dHmiddlei

[ ε, f ]
))
.

This case corresponds to Ndays spaces where we compute correlations between

the first and last hour of the day for each one.

Given a point cloud, the construction of the Vietoris–Rips filtration in Section 2.2

doesn’t require a metric space structure and is applicable to any space E with a

dissimilarity map [36] dE : E × E → R+, i.e. a symmetric map such that for all

x ∈ E, dE(x, x) = 0. To make the symmetric maps we defined above dissimilarity

maps between elements of X, we consider functions f of the form f(x) = g((1− x2))

where g : [ 0, 1] → [ 0, 1] is a continuous increasing function. The role of g is to

rescale the dissimilarity matrices because of the small difference between many of

their coefficients. Empirically, choosing g(x) = x10 seems reasonable for our dataset.

4.3 Results

We wrote our code in Python. Apart from standard Python libraries, the scripts we

used but didn’t write are the C++ code Ripser [4] (see Section 2.2) for the computa-

tion of homology which we execute from Python using the subprocess library and the

manifold library from sklearn to apply multi-dimensional scaling to a point cloud.

Given E = (E, dE) a finite set with a dissimilarity map, we denote by Rips(E) the

filtered simplicial complex obtained with a sequence of nested Vietoris-Rips simplicial

complexes with set of vertices E.

The computation of the homology of Rips(X) leads to the results summarized in

Table 4.1. We see that there exists persistence intervals up to degree 3 homology. We

want to investigate, for each homology degree p ≤ 3, what are the generators of the

pth homology groups for a specific value of the filtration parameter. This will tell us

which stock-order type combinations trigger each other and for how long. A natural

descriptor to look at for this information is the barcode of Rips(X) (Figure 4.1).

We want to see, for a given value of the filtration parameter r, which vertices of

Rips(X) are connected i.e. which ones have pairwise distance (pariwise dissimilarity)

less than r. We use the barcode to determine which values of r might be of interest.
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Homology degree Number of persistence intervals

0 28
1 18
2 12
3 3

4 and more 0

Table 4.1: Number of persistence intervals of Rips(X)

Figure 4.1: Barcode of Rips(X) for degree 0, 1 and 2 homology.

4.3.1 Edges

As suggested by the barcode, there are very few connections for small values of

r: the first three edges appearing are {(AAPL, lb), (AAPL, ls)} (r = 0.03389),

{(NVDA, lb), (NVDA, ls)} (r = 0.0486783), and {(FB, lb), (FB, ls)} (r = 0.0972022).

They involve exclusively pairs of limit orders on the same stock. The next two edges

appearing are the pairs of limit orders of CSCO then MSFT. It is interesting to note
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that the first point of market order type to be connected to any other point appears

for r = 0.279402 : {(NVDA,mb), (NVDA, ls)}. On the stock NVDA, the pair of

limit orders was already an edge, which means that for r ≥ 0.279402 the sell limit

order on NVDA is connected to both order types on the buy direction for NVDA.

The consecutive death events at r = 0.565898 then r = 0.568468 are particularly

interesting. The death at r = 0.565898 corresponds to the first connection between

two points related to different stocks: {(MSFT, ls), (AAPL, ls)}. We not that both

points are related to limit sells. The death at r = 0.568468 corresponds to the

second point with market order type to be part of an edge: it is again a NVDA

point, in {(NVDA,ms), (NVDA, lb)}. NVDA points are involved in three edges:

one between limit orders, and the two market/limit combinations involving orders in

opposite directions.

We can make two important remarks so far for r ≤ 0.57:

• limit orders are more connected than market orders: this comes from the fact

that they are more correlated than market orders on this data set. We note the

particular behavior of points related to NVDA;

• Connections between points related to the same stock happen more often than

connections between points from different stocks.

4.3.2 Higher dimensional simplices

The first triangle appears for r ' 0.5977. It is interesting to note that this does not

correspond to any birth/death event of any degree on Ripser’s output: this could

come from a numerical error of the software. Indeed, Ripser indicates a birth event

in the degree 1 homology for r = 0.624653. This triangle corresponds to three NVDA

points: both limit orders and buy market order.

The second triangle appears for r ' 0.648. It corresponds to the limit sells of

AAPL, FB and MSFT. We recall that AAPL and MSFT limit sells were the first

edge with points from different stocks. The third triangle appears for r = 0.703819.

This corresponds to a birth event in degree 1 homology. It is interesting to note that

this triangle is formed by the limits buys of (again) AAPL, FB and MSFT. There are

no edges involving any couple of points from different stocks that do not belong to one

of these triangles. The fourth triangle corresponds to GOOG points (r = 0.808748):

like the first triangle (NVDA points), it is composed by both limit orders and the buy

market order. There is no market sell order in any of the triangles constructed so far.

Like the third triangle, it corresponds to a birth event in degree 1 homology. There
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are two more triangles for r ' 0.86 MSFT limit buy and sell and AAPL limit sell

and AAPL limit buy and sell and MSFT limit buy. We note that thee are Very few

market sells in higher dimensional simplices and there is a concentration of higher

dimensional simplices near 1.

4.3.3 Visualization

To represent visually these connections, we would like to embed our observations in

R2 by multi-dimensional scaling. Even though the coefficients of the dissimilarity

matrix we consider here satisfy the identity of indiscernibles, some of them violate

the triangle inequality. Since the connections would still be plotted according to the

initial dissimilarity matrix, this might not be visually convenient because we could

see close points on the diagram without connection, and far points with connection.

To avoid this inconvenience, we transform the dissimilarity matrix using Djikstra’s

Algorithm, then apply multi-dimensional scaling to this new matrix. The plots we

obtained can be found in Appendix C.

To analyze the results above, it is important to look at the connection diagrams

as dynamic objects with respect to the filtration parameter. in fact, we note on the

persistence diagram of Rips(X) (Figure 4.2) a concentration of some of the degree 1

homology points nearby the diagonal, but it is not relevant to compute confidence

sets in this case given the small number of points.

4.4 Model Robustness

Stability results for persistence diagrams in Chapter 2 show that for some functional

classes, the divergence of persistence diagrams after a small perturbation is well con-

trolled. In order to assess the robustness of our model, we investigate the two following

problems:

• How sensitive is the model to the definition of a dissimilarity metric ?

• What can we infer about the persistence of Xi from the persistence of X ?

4.4.1 Sensitivity with respect to the dissimilarity measure

We have to ensure that our topological descriptors are not too sensitive to the def-

inition of our dissimilarity map i.e. to the parameter ε, otherwise the choice of a
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Figure 4.2: Persistence diagram of Rips(X) for degree 0, 1 and 2 homology.

specific value for ε would be arbitrary and difficult to generalize. We propose a way

to visualize this on Figure [4.3] where we plot the graph of:

ε 7→ W (dgm((X, dX[ ε, f ] )), dgm((X, dX[ 0.1, f ] ))).

4.4.2 The time behavior of persistence diagrams

The dissimilarity matrix in the previous subsection is obtained by averaging values

over the whole period analyzed, but is this representative of the daily behavior of the

LOB ?

To answer this question, we compute for all integers i ∈ J1, NdaysK the persistence

diagram Di of Xi. We would compute the 2-Wasserstein distance matrix of the set

of persistence diagrams (Di)i∈J1,NdaysK and then compute the associated Vietoris–Rips

filtration Rips((Di)i∈J1,NdaysK) and plot the associated persistence diagram for degree

0, 1 and 2 homology. We leave this for future work.
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Figure 4.3: Sensitivty with respect to time slot duration

To explain this variability, we now split our data in two and we would like to know

whether the two resulting sets follow the same distribution. The permutation test

described in Section returns a p value superior to 0.1 which leads to reject the null

hypothesis of independence of our data.
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Chapter 5

Conclusion

5.1 Discussion

We started the present work by presenting the construction of persistent homology

and its main descriptors, as well as some theoretical guarantees of robustness. We

then reviewed the recent statistical approaches to this theory and finally applied it

to limit order book data. Our main findings are:

• Limit orders tend to form significantly more simplices than Market orders.

• Oders on the same stock tend to form significantly more simplices than orders

on different stocks.

• Points related to market sell orders are marginal in 3-simplices or higher.

• AAPL, MSFT and FB limit orders showed interesting correlation.

5.2 Future Extensions

5.2.1 Trading Period Classification

An extension to our work would be to understand the differences in topological per-

sistence between the first hour of trading, the last hour of trading and the rest of

the day. Our objective would be to classify persistence diagrams by trading period

with the labels {openning,middle, closure}. For all i ∈ J1, NdaysK and for all labels

m, let D
(m)
i be the persistence diagram of H(m)

i . Consider the classification problem:

given a persistence diagram, from what trading period was the original point cloud

sampled from ? As a first approach to the classification problem, we would vectorize

our data similarly to [1] using persistence images. We expect that the discretization
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of our diagrams to be particularly sparse. We then perform a logistic regression on

the vectorized dataset. A second approach would be to use the Sliced Wasserstein

Kernel from Section 3.2 to implement a SVM model as described in Subsection 3.5.1.

A third use case would be to assume that each observation is a collection of p per-

sistence diagrams that all correspond to the same trading period (for instance the

persistence diagrams of the first hour of trading of each day of a week). The question

we ask ourselves is: given a vector of persistence diagrams, from what trading period

were the p original point clouds sampled from ? We would implement the Perceptron

described in Subsection 3.5.3 to answer this question. Standard comparison criteria

for these models could be cross validation scores, running times and AUC. Further-

more, it would be interesting to study the persistent homology of order flows defining

metrics that incorporate information about the price and size of orders.

5.2.2 Neural Network on Dp

From a theoretical standpoint, the generalization of the Perceptron to build a full

neural network seems challenging. One of the problems we encountered for this

extension is the computational cost in the computation of the Fréchet mean at every

step of the learning process. We are not aware of any heuristics to avoid restarting

the whole scheme at every step. Nonetheless, the optimal transport approach to the

Fréchet mean is a concept of interest and an extension for Bottleneck distance is an

open question. Another interesting question for a deep neural network model on D
would be: shall we embed the barycenter of the diagrams in R from the first layer or

is it preferable to us a map on D and do the embedding at the last layer ? We did

not implement such a model because of the theoretical difficulties coming from the

notion of differentiability on DD.

5.2.3 Other Topological Summaries

Finally we note that the usual topological summaries do not encode any information

to identify the generators. But this is important our problem: we would like to know

for instance if the generators of a tetrahedron are from the same stock or if they

are all distinct immediately from the descriptor. Defining a descriptor encoding this

information could be helpful to define metrics that compare instances of the descriptor

according to their generators. We couldn’t present the statistical approaches to other

descriptors here by lack of space: the persistence landscape [7,6] and the persistence

entropy [3] are examples of topological summaries suitable for a statistical approach.
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Appendix A

Notation and acronyms

For all sets E,F ⊂ R, we use the notation:

• E∗ := {x ∈ E : x 6= 0},

• E+ := {x ∈ E : x ≥ 0},

• E− := {x ∈ E : x ≤ 0},

• E∗+ := {x ∈ E : x > 0},

• E∗− := {x ∈ E : x < 0},

• FE := {f : f : E→ F}.

For all real numbers a, b ∈ R such that a < b, we use the notation:

• Ja, bK := [ a, b] ∩ Z,

Let n, p ∈ N and let E be a set:

• We denote by Mn,p(E) the set of matrices with coefficients in E with n rows and

p columns.

• For all matrices M ∈Mn,p(E), we denote by Mi,j the entry in row i and column

j. By abuse of notation we write M = (Mi,j)(i,j)∈J1,nK×J1,pK.

We use th following notation for some specific sets:

• We denote by ∆ the diagonal line in R2,

• We denote by D the set of persistence diagrams. For all filtered simplicial

complex X, and by dgm(X) the persistence diagram of X,
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• We denote by F2 = Z/2Z the field with cardinality 2.

We use the acronyms:

• R.K.H.S. : Reproducing Kernel Hilbert Space,

• C.N.S.D. : Conditionally Negative Semidefinite.
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Appendix B

Topological definitions

Definition B.0.1 (Field). Let E be a set. Let + : E × E → E and × : E × E → E

be internal composition laws on E. We say that (E,+,×) is a field if:

1. + and × are associative,

2. + and × are commutative,

3. + and × both have identity elements denoted respectively 0E and 1E,

4. × is distributive over +,

5. All the elements of E have an inverse for +,

6. All the non zero elements of E have an inverse for ×.

We denote by F2 the field ({0, 1},+,×) where × is the usual multiplication law on R
and + is defined by:

a+ b =

{
1 if a+ b is odd
0 if a+ b is even

Definition B.0.2 (Metric space). Let E be a set. We say that a function d : E×E →
R is a metric if:

1. ∀x, y ∈ E, d(x, y) ≥ 0,

2. ∀x, y ∈ E, d(x, y) = 0 ⇐⇒ x = y,

3. ∀x, y ∈ E, d(x, y) = d(y, x),

4. ∀x, y, z ∈ E, d(x, z) ≤ d(x, y) + d(y, z).

We say that (E, d) is a metric space.
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Definition B.0.3 (Cauchy sequence). Let (E, d) be a metric space. Let (xn)n∈N be a

sequence in E. We say that (xn)n∈N is a Cauchy sequence if limn→∞ limp→∞ d(xn, xn+p) =

0.

Definition B.0.4 (Complete metric space). Let (E, d) be a metric space. We say

that E is complete if all Cauchy sequences of E converge in E with respect to d.

Definition B.0.5 (Inner product space). Let E be a vector space on C. Let 〈., .〉E :

E × E 7→ R. We say that 〈., .〉E is an inner product in E if:

1. ∀x ∈ E, 〈x, x〉E ≥ 0

2. ∀x ∈ E, 〈x, x〉E = 0 ⇐⇒ x = 0

3. ∀x, y ∈ E, 〈x, y〉E = 〈y, x〉E

4. ∀x, y, z ∈ E, ∀λ, µ ∈ C, 〈λx+ µy, z〉E = λ〈x, z〉E + µ〈y, z〉E

We say that (E, 〈., .〉E) is an inner product space.

Definition B.0.6 (Hilbert space). We say that an inner product space (H, 〈., .〉H) is

a Hilbert space if H is complete.
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Appendix C

Connection diagrams of Rips(X)

Figure C.1: Connection diagram of X for r = 0.0972022.
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Figure C.2: Connection diagram of X for r = 0.568468.
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Figure C.3: Connection diagram of X for r = 0.6.
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Figure C.4: Connection diagram of X for r = 0.71.
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sistent homology and dynamical distances to analyze protein binding. Statistical

applications in genetics and molecular biology, 15(1), 19-38.

[28] Kusano, G., Hiraoka, Y., and Fukumizu, K. (2016, June). Persistence weighted

Gaussian kernel for topological data analysis. In International Conference on Ma-

chine Learning (pp. 2004-2013).

[29] Lacombe, T., Cuturi, M., and Oudot, S. (2018). Large Scale computation of

Means and Clusters for Persistence Diagrams using Optimal Transport. arXiv

preprint arXiv:1805.08331.

[30] Leibon, G., Pauls, S., Rockmore, D., and Savell, R. (2008). Topological structures

in the equities market network. Proceedings of the National Academy of Sciences,

105(52), 20589-20594.

[31] Liu, J. Y., Jeng, S. K., and Yang, Y. H. (2016). Applying topological persis-

tence in convolutional neural network for music audio signals. arXiv preprint

arXiv:1608.07373.

[32] Mileyko, Y., Mukherjee, S., and Harer, J. (2011). Probability measures on the

space of persistence diagrams. Inverse Problems, 27(12), 124007.

[33] Munkres, J. (1957). Algorithms for the assignment and transportation problems.

Journal of the society for industrial and applied mathematics, 5(1), 32-38.

51



[34] Nicolau, M., Levine, A. J., and Carlsson, G. (2011). Topology based data analysis

identifies a subgroup of breast cancers with a unique mutational profile and excel-

lent survival. Proceedings of the National Academy of Sciences, 108(17), 7265-

7270.

[35] Obayashi, I., and Hiraoka, Y. (2017). Persistence Diagrams with Linear Machine

Learning Models. arXiv preprint arXiv:1706.10082.

[36] Otter, N., Porter, M. A., Tillmann, U., Grindrod, P., and Harrington, H. A.

(2017). A roadmap for the computation of persistent homology. EPJ Data Science,

6(1), 17.

[37] Phipson, B., and Smyth, G. K. (2010). Permutation P-values should never be

zero: calculating exact P-values when permutations are randomly drawn. Statisti-

cal applications in genetics and molecular biology, 9(1).

[38] Reininghaus, J., Huber, S., Bauer, U., and Kwitt, R. (2015). A stable multi-scale

kernel for topological machine learning. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 4741-4748).

[39] Robinson, A., and Turner, K. (2017). Hypothesis testing for topological data

analysis. Journal of Applied and Computational Topology, 1(2), 241-261.

[40] Rosenblatt, F. (1958). The perceptron: a probabilistic model for information stor-

age and organization in the brain. Psychological review, 65(6), 386.

[41] Schölkopf, B., Herbrich, R., and Smola, A. J. (2001, July). A generalized repre-

senter theorem. In International conference on computational learning theory (pp.

416-426). Springer, Berlin, Heidelberg.

[42] Sejdinovic, D., Gretton, A., Sriperumbudur, B., and Fukumizu, K. (2012). Hy-

pothesis testing using pairwise distances and associated kernels (with appendix).

arXiv preprint arXiv:1205.0411

[43] Turner, K., Mileyko, Y., Mukherjee, S., and Harer, J. (2014). Féchet means
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